The Future of Argo: Sustaining and Enhancing Global Ocean Observations

Dean Roemmich droemmich@ucsd.edu
On behalf of the International Argo Steering Team
www.argo.ucsd.edu

Ocean Sciences Meeting
Portland February 13, 2018
The Future of Argo

• Argo Today: A decade of sampling the global upper-ocean by the multi-national Argo Program.

• Deep Argo: Extending Argo to full ocean depth.

• BGC Argo: Adding key biogeochemical (BGC) parameters to the Argo array.
Argo Float Technology:
Profiling floats:

- Developed in the early 1990s by R. Davis (Scripps) and D. Webb (Webb Research).
- 2007: Argo achieves 3000 active floats

Profiling float photo and schematic:
Measures temperature, salinity, pressure

Schematic of a single Argo float cycle

- Float transmits data to users via satellite
- Descent to depth – 6 hours
- 1000m – drift approx. 9 days
- Float descends to begin profile from a greater depth – 2000m
- Temperature and Salinity profile recorded during ascent – 6 hours
- Total cycle time – 10 days
Argo: Transforming oceanography through systematic observation of the global ocean.

Uses of Argo data today:

- **Basic research and education:** 3000 research papers, covering a broad range of topics, and 250 PhD theses have used Argo data.

- **Climate and Global Change:** Argo is the primary dataset measuring the global heat imbalance in the climate system, and for ocean observations of global-scale climate variations such as El Niño.

- **Ocean Reanalysis and Forecasting:** Argo provides the subsurface data for global ocean data assimilation and forecast models (U.S. Navy, NOAA, NASA, ECMWF, UK Met, BoM, JAMSTEC, and others).

Argo today 26 National Programs

The Future of Argo: Argo’s goal is to sample all of the ocean volume, and to describe the evolving physical, biogeochemical, and ecosystems state of the World Ocean.
Argo Today: How has ocean observing improved with Argo?

20th century temperature and salinity profiles (> 1000 m) per 1° square.

21st century Argo temperature and salinity profiles per 1° square. All Argo data are made immediately and publicly available.
The Future: Deep Argo

Motivation

• The ocean below 2000 m is warming, particularly in the Southern Hemisphere (Purkey and Johnson, 2010).
• Full-depth observations are necessary to close the Earth’s heat and freshwater budgets and for understanding the component of sea level rise due to thermal expansion.
• Important elements of deep ocean circulation are below 2000 m
• Model initialization/assimilation requires data below 2000 m.

Status and Evolution

• 69 Deep Argo floats are presently active.
• 4 Deep Argo float models are being demonstrated in regional pilot arrays.
• New CTDs are under assessment for accuracy and stability.
• Deep Argo will expand from its pilot phase to become a global surface-to-bottom array of over 1200 floats.

Conceptual plan for 1228 Deep Argo floats at nominal 5° x 5° spacing (Johnson et al, 2015).
The Future: Deep Argo

Operation

- A Deep SOLO cycle is like a regular Argo cycle, except to the sea bottom or 6000 m.
- Uses a spherical glass housing for high pressure tolerance.
- Capable of more than 200 cycles – for float lifetimes of more than 6 years.
- A passive bottom detection system enables Deep SOLO to sample within 3-m of the sea bottom.

(1) The Deep SOLO is deployed by a passing ship.
(2) It collects temperature, salinity, and pressure data while sinking
(3) ...to within 3 m of the sea bottom or 6000 m
(4) Rising to 5000 m
(5) Drifting for ~8 days
(6) Rising to the sea surface.
(7) Transmitting the data.

Temperature anomaly and salinity from a Deep SOLO float in the SW Pacific Basin.
Figure: N. Zilberman
The Future: BGC Argo

Motivation

- Understand the fundamental bio-geochemical cycling in the oceans, and thus the foundation of biological productivity patterns and carbon uptake
- To track long term trends – e.g. there is already evidence of significant ocean oxygen changes
- Research topics include: Carbon uptake, Nitrate cycling, Acidification, Biological carbon pump, Phytoplankton communities

Status

- BGC Argo is coordinated by an international 14-member Steering Committee reporting to the Argo Steering Team to ensure that the Core and BGC programs are harmonized.
- 13 national programs are presently contributing to BGC Argo.
- Nearly 300 floats carry oxygen sensors, with smaller numbers for pH, nitrate, chlorophyll-a, suspended particles, downwelling irradiance.
- Regional pilot arrays include the Southern Ocean (SOCCOM), Sub-Polar North Atlantic, Marginal seas, and Oxygen Minimum Zones
- Data management, including delayed-mode quality control, is via partnership with the Argo Data system

About 100 SOCCOM (U.S. NSF/NASA) floats are presently active.
Conclusion and acknowledgements

- While sustaining global upper-ocean sampling and high quality data, Argo will expand to full-depth coverage and will include sampling of key biogeochemical parameters.

- All Argo data are made publicly available in near real-time and in scientifically QC’ed form (www.argo.net).

- The multi-institution U.S. Argo Program, including its Deep Argo pilot phase, is supported by the Ocean Observations and Monitoring Division of NOAA.

- The U.S. SOCCOM (BGC) project is supported by NSF and NASA, with some platforms provided by U.S. Argo.

- Argo is a multi-national collaboration, and the critical contributions made by many international partners are gratefully acknowledged.